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Opti 501 Final Exam Solutions 12/11/2018 

Problem 1) a) From Maxwell’s first equation we have 𝒌𝒌 ∙ 𝑬𝑬0 = 𝑘𝑘𝑧𝑧𝐸𝐸𝑧𝑧o = 0. Since 𝑘𝑘𝑧𝑧 ≠ 0, we 
must have 𝐸𝐸𝑧𝑧o = 𝐸𝐸𝑧𝑧o′ + i𝐸𝐸𝑧𝑧o″ = 0, which indicates that both 𝐸𝐸𝑧𝑧o′  and 𝐸𝐸𝑧𝑧o″  are equal to zero. 

b) 𝑬𝑬0
′ + i𝑬𝑬0

″ = (𝐸𝐸𝑥𝑥o′ 𝒙𝒙� + 𝐸𝐸𝑦𝑦o′ 𝒚𝒚�) + i(𝐸𝐸𝑥𝑥o″ 𝒙𝒙� + 𝐸𝐸𝑦𝑦o″ 𝒚𝒚�) = (𝐸𝐸𝑥𝑥o′ + i𝐸𝐸𝑥𝑥o″ )𝒙𝒙� + (𝐸𝐸𝑦𝑦o′ + i𝐸𝐸𝑦𝑦o″ )𝒚𝒚� 
 

 = �𝐸𝐸𝑥𝑥o′
2 + 𝐸𝐸𝑥𝑥o″

2�
1 2⁄

exp[i tan−1(𝐸𝐸𝑥𝑥o″ 𝐸𝐸𝑥𝑥o′⁄ )]𝒙𝒙� + �𝐸𝐸𝑦𝑦o′
2 + 𝐸𝐸𝑦𝑦o″

2�
1 2⁄

exp�i tan−1(𝐸𝐸𝑦𝑦o″ 𝐸𝐸𝑦𝑦o′⁄ )� 𝒚𝒚�. (1) 
 

c) 𝜑𝜑𝑥𝑥o − 𝜑𝜑𝑦𝑦o = 0   or ± 180°   →    tan(𝜑𝜑𝑥𝑥o − 𝜑𝜑𝑦𝑦o) = 0    →     tan(𝜑𝜑𝑥𝑥o) − tan(𝜑𝜑𝑦𝑦o)

1 + tan(𝜑𝜑𝑥𝑥o) tan(𝜑𝜑𝑦𝑦o)
= 0 

 →    tan(𝜑𝜑𝑥𝑥o) =  tan(𝜑𝜑𝑦𝑦o)      →       𝐸𝐸𝑥𝑥o″ 𝐸𝐸𝑥𝑥o′⁄ = 𝐸𝐸𝑦𝑦o″ 𝐸𝐸𝑦𝑦o′⁄ = 𝛼𝛼. (2) 

We thus have 𝑬𝑬0
′ = 𝐸𝐸𝑥𝑥o′ 𝒙𝒙� + 𝐸𝐸𝑦𝑦o′ 𝒚𝒚� and 𝑬𝑬0

″ = 𝐸𝐸𝑥𝑥o″ 𝒙𝒙� + 𝐸𝐸𝑦𝑦o″ 𝒚𝒚� = 𝛼𝛼(𝐸𝐸𝑥𝑥o′ 𝒙𝒙� + 𝐸𝐸𝑦𝑦o′ 𝒚𝒚�). This shows 
that 𝑬𝑬0

′  and 𝑬𝑬0
″ are parallel to each other when 𝛼𝛼 > 0, and are anti-parallel when 𝛼𝛼 < 0. 

d) 𝜑𝜑𝑥𝑥o − 𝜑𝜑𝑦𝑦o = ±90°   →    tan(𝜑𝜑𝑥𝑥o − 𝜑𝜑𝑦𝑦o) = ∞    →     tan(𝜑𝜑𝑥𝑥o) − tan(𝜑𝜑𝑦𝑦o)

1 + tan(𝜑𝜑𝑥𝑥o) tan(𝜑𝜑𝑦𝑦o)
= ∞ 

 →    tan(𝜑𝜑𝑥𝑥o) tan(𝜑𝜑𝑦𝑦o) = −1  →   𝐸𝐸𝑥𝑥o″ 𝐸𝐸𝑥𝑥o′⁄ = −𝐸𝐸𝑦𝑦o′ 𝐸𝐸𝑦𝑦o″⁄ = 𝛽𝛽. (3) 

Since the magnitudes of 𝐸𝐸𝑥𝑥o and 𝐸𝐸𝑦𝑦o are also equal to each other, we have 

 |𝐸𝐸𝑥𝑥o| = |𝐸𝐸𝑦𝑦o|   →  𝐸𝐸𝑥𝑥o′
2 + 𝐸𝐸𝑥𝑥o″

2 = 𝐸𝐸𝑦𝑦o′
2 + 𝐸𝐸𝑦𝑦o″

2  →   𝐸𝐸𝑥𝑥o′
2[1 + (𝐸𝐸𝑥𝑥o″ 𝐸𝐸𝑥𝑥o′⁄ )2] = 𝐸𝐸𝑦𝑦o″

2[(𝐸𝐸𝑦𝑦o′ 𝐸𝐸𝑦𝑦o″⁄ )2 + 1] 

 →    𝐸𝐸𝑥𝑥o′
2(1 + 𝛽𝛽2) = 𝐸𝐸𝑦𝑦o″

2(𝛽𝛽2 + 1)          →          𝐸𝐸𝑥𝑥o′ = ±𝐸𝐸𝑦𝑦o″ . (4) 

From Eqs.(3) and (4), we now find that 𝐸𝐸𝑥𝑥o″ = ∓𝐸𝐸𝑦𝑦o′ . Consequently, 

 |𝑬𝑬0
′ |2 = 𝐸𝐸𝑥𝑥o′

2 + 𝐸𝐸𝑦𝑦o′
2 = 𝐸𝐸𝑥𝑥o″

2 + 𝐸𝐸𝑦𝑦o″
2 = |𝑬𝑬0

″|2; (5) 

 𝑬𝑬0
′ ∙ 𝑬𝑬0

″ = 𝐸𝐸𝑥𝑥o′ 𝐸𝐸𝑥𝑥o″ + 𝐸𝐸𝑦𝑦o′ 𝐸𝐸𝑦𝑦o″ = 0. (6) 

The above equations confirm that the real-valued vectors 𝑬𝑬0
′  and 𝑬𝑬0

″ have equal magnitudes 
and are orthogonal to each other. 

Problem 2) a) From Maxwell’s 2nd equation with 𝑱𝑱free = 0 we have 𝜵𝜵 × 𝑯𝑯 = 𝜕𝜕𝑫𝑫 𝜕𝜕𝜕𝜕⁄ , which yields 

 [𝜇𝜇0𝜇𝜇(𝜔𝜔)]−1 𝜵𝜵 × 𝑩𝑩 = 𝜀𝜀0𝜀𝜀(𝜔𝜔) 𝜕𝜕𝑬𝑬 𝜕𝜕𝜕𝜕⁄  

 →           𝜵𝜵 × (𝜵𝜵 × 𝑨𝑨) = 𝜇𝜇0𝜀𝜀0𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔) 𝜕𝜕(−𝜵𝜵𝜓𝜓 − 𝜕𝜕𝑨𝑨 𝜕𝜕𝑡𝑡⁄ ) 𝜕𝜕𝜕𝜕⁄  

 →           𝜵𝜵(𝜵𝜵 ∙ 𝑨𝑨) − 𝜵𝜵2𝑨𝑨 = −[𝑛𝑛2(𝜔𝜔) 𝑐𝑐2⁄ ][𝜵𝜵(𝜕𝜕𝜓𝜓 𝜕𝜕𝜕𝜕⁄ ) + 𝜕𝜕2𝑨𝑨 𝜕𝜕𝑡𝑡2⁄ ] 

 →           𝜵𝜵2𝑨𝑨 − [𝑛𝑛(𝜔𝜔) 𝑐𝑐⁄ ]2 𝜕𝜕2𝑨𝑨 𝜕𝜕𝑡𝑡2⁄ = 𝜵𝜵{𝜵𝜵 ∙ 𝑨𝑨 + [𝑛𝑛(𝜔𝜔) 𝑐𝑐⁄ ]2 𝜕𝜕𝜓𝜓 𝜕𝜕𝜕𝜕⁄ }. (1) 

In the Lorenz gauge, we set 𝜵𝜵 ∙ 𝑨𝑨 + [𝑛𝑛(𝜔𝜔) 𝑐𝑐⁄ ]2 𝜕𝜕𝜓𝜓 𝜕𝜕𝜕𝜕⁄ = 0 to arrive at the following wave 
equation for the vector potential: 

 𝜵𝜵2𝑨𝑨 − [𝑛𝑛(𝜔𝜔) 𝑐𝑐⁄ ]2 𝜕𝜕2𝑨𝑨 𝜕𝜕𝑡𝑡2⁄ = 0. (2) 

𝐸𝐸𝑥𝑥o 𝐸𝐸𝑦𝑦o 

|𝐸𝐸𝑥𝑥o| 𝜑𝜑𝑥𝑥o �𝐸𝐸𝑦𝑦o� 𝜑𝜑𝑦𝑦o 

𝛼𝛼 is some real constant 

𝛽𝛽 is some real constant 
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From Maxwell’s first equation (with 𝜌𝜌free = 0), working again in the Lorenz gauge, we find 

 𝜵𝜵 ∙ 𝑫𝑫 = 0       →      𝜀𝜀0𝜀𝜀(𝜔𝜔)𝜵𝜵 ∙ 𝑬𝑬 = 0     →       𝜵𝜵 ∙ (−𝜵𝜵𝜓𝜓 − 𝜕𝜕𝑨𝑨 𝜕𝜕𝜕𝜕⁄ ) = 0 

 →      𝜵𝜵 ∙ (𝜵𝜵𝜓𝜓) + 𝜕𝜕(𝜵𝜵 ∙ 𝑨𝑨) 𝜕𝜕𝜕𝜕⁄ = 0      →       𝛻𝛻2𝜓𝜓 − [𝑛𝑛(𝜔𝜔) 𝑐𝑐⁄ ]2 𝜕𝜕2𝜓𝜓 𝜕𝜕𝑡𝑡2⁄ = 0. (3) 

b) The assumption of monochromaticity implies that the fields have a time-dependence factor 
exp(−i𝜔𝜔𝜔𝜔). Consequently 𝜕𝜕2𝑨𝑨(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡2⁄ = (−i𝜔𝜔)2𝑨𝑨(𝒓𝒓) = −𝜔𝜔2𝑨𝑨(𝒓𝒓); similarly, 𝜕𝜕2𝜓𝜓(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡2⁄ =
−𝜔𝜔2𝜓𝜓(𝒓𝒓). For plane-wave solutions of Maxwell’s equations, we now write 𝑨𝑨(𝒓𝒓) = 𝑨𝑨0 exp(i𝒌𝒌 ∙ 𝒓𝒓) 
and 𝜓𝜓(𝒓𝒓) = 𝜓𝜓0 exp(i𝒌𝒌 ∙ 𝒓𝒓). We will then have 

 𝜵𝜵2𝑨𝑨(𝒓𝒓) = −(𝒌𝒌 ∙ 𝒌𝒌)𝑨𝑨0 exp(i𝒌𝒌 ∙ 𝒓𝒓), (4) 

 𝛻𝛻2𝜓𝜓(𝒓𝒓) = −(𝒌𝒌 ∙ 𝒌𝒌)𝜓𝜓0 exp(i𝒌𝒌 ∙ 𝒓𝒓). (5) 

The wave equations for 𝑨𝑨(𝒓𝒓, 𝑡𝑡) and 𝜓𝜓(𝒓𝒓, 𝑡𝑡) in Eqs.(2) and (3) now yield 𝒌𝒌 ∙ 𝒌𝒌 = [𝑛𝑛(𝜔𝜔) 𝑐𝑐⁄ ]2𝜔𝜔2, 
which is the same dispersion relation 𝑘𝑘2 = [𝜔𝜔𝜔𝜔(𝜔𝜔) 𝑐𝑐⁄ ]2 as obtained previously from Maxwell’s 
equations without resort to the potentials. 

c) The field amplitudes for 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] and 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 𝑩𝑩0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] may 
now be derived from 𝑬𝑬 = −𝜵𝜵𝜓𝜓 − 𝜕𝜕𝑨𝑨 𝜕𝜕𝑡𝑡⁄  as 𝑬𝑬0 = −i𝒌𝒌𝜓𝜓0 + i𝜔𝜔𝑨𝑨0, and from 𝑩𝑩 = 𝜵𝜵 × 𝑨𝑨 as 
𝑩𝑩0 = i𝒌𝒌 × 𝑨𝑨0. 

Problem 3) Considering that 𝐸𝐸𝐵𝐵 = 𝜌𝜌𝑚𝑚𝐸𝐸𝐴𝐴 exp(i𝑘𝑘0𝑑𝑑), we will have 

 𝐸𝐸𝐴𝐴 = 𝜏𝜏𝑚𝑚𝐸𝐸0 + 𝜌𝜌𝑚𝑚𝐸𝐸𝐵𝐵 exp(i𝑘𝑘0𝑑𝑑) = 𝜏𝜏𝑚𝑚𝐸𝐸0 + 𝜌𝜌𝑚𝑚2 𝐸𝐸𝐴𝐴 exp(i2𝑘𝑘0𝑑𝑑)   →   𝐸𝐸𝐴𝐴 = 𝜏𝜏𝑚𝑚𝐸𝐸0
1 − 𝜌𝜌𝑚𝑚2 exp(i2𝑘𝑘0𝑑𝑑)

 
. (1) 

The overall transmission coefficient 𝜏𝜏 of the Fabry-Perot cavity may now be determined 
straightforwardly, as follows: 

 𝜏𝜏𝐸𝐸0 = 𝜏𝜏𝑚𝑚𝐸𝐸𝐴𝐴 exp(i𝑘𝑘0𝑑𝑑)        →          𝜏𝜏 = 𝜏𝜏𝑚𝑚2 exp(i𝑘𝑘0𝑑𝑑)
1 − 𝜌𝜌𝑚𝑚2 exp(i2𝑘𝑘0𝑑𝑑)

 
. (2) 

As for the overall reflection coefficient 𝜌𝜌, we note that the reflected 𝐸𝐸-field is the super-
position of a direct reflection 𝜌𝜌𝑚𝑚𝐸𝐸0 from the first mirror, and the transmitted fraction of 𝐸𝐸𝐵𝐵 
through the first mirror, albeit after 𝐸𝐸𝐵𝐵 has been phase-shifted by 𝑘𝑘0𝑑𝑑. We thus write 

 𝜌𝜌𝐸𝐸0 = 𝜌𝜌𝑚𝑚𝐸𝐸0 + 𝜏𝜏𝑚𝑚𝐸𝐸𝐵𝐵 exp(i𝑘𝑘0𝑑𝑑) = 𝜌𝜌𝑚𝑚𝐸𝐸0 + 𝜏𝜏𝑚𝑚𝜌𝜌𝑚𝑚𝐸𝐸𝐴𝐴 exp(i2𝑘𝑘0𝑑𝑑) = �𝜌𝜌𝑚𝑚 + 𝜌𝜌𝑚𝑚𝜏𝜏𝑚𝑚2 exp(i2𝑘𝑘0𝑑𝑑)
1 − 𝜌𝜌𝑚𝑚2 exp(i2𝑘𝑘0𝑑𝑑)

� 𝐸𝐸0 

 →  𝜌𝜌 = [1 − (𝜌𝜌𝑚𝑚2  − 𝜏𝜏𝑚𝑚2 )exp(i2𝑘𝑘0𝑑𝑑)]𝜌𝜌𝑚𝑚
1 − 𝜌𝜌𝑚𝑚2 exp(i2𝑘𝑘0𝑑𝑑)

 . (3) 

Digression: For non-absorptive mirrors, it is known that 𝜌𝜌𝑚𝑚 = |𝜌𝜌𝑚𝑚|𝑒𝑒i𝜑𝜑𝑚𝑚  and 𝜏𝜏𝑚𝑚 = |𝜏𝜏𝑚𝑚|𝑒𝑒i(𝜑𝜑𝑚𝑚±90°), so that 
𝜌𝜌𝑚𝑚2 − 𝜏𝜏𝑚𝑚2 = (|𝜌𝜌𝑚𝑚|2 + |𝜏𝜏𝑚𝑚|2)𝑒𝑒i2𝜑𝜑𝑚𝑚 = 𝑒𝑒i2𝜑𝜑𝑚𝑚 , where 𝜑𝜑𝑚𝑚 is a phase angle that depends on the specific 
structure of the mirror. A similar relation must, therefore, hold for the Fabry-Perot resonator if the mirrors 
happen to be non-absorptive. To confirm this relation, we write 

 𝜌𝜌2 − 𝜏𝜏2 = [1 + 𝑒𝑒i4𝜑𝜑𝑚𝑚 exp(i4𝑘𝑘0𝑑𝑑) − 2𝑒𝑒i2𝜑𝜑𝑚𝑚 exp(i2𝑘𝑘0𝑑𝑑)]𝜌𝜌𝑚𝑚2  − (𝜌𝜌𝑚𝑚2  − 𝑒𝑒i2𝜑𝜑𝑚𝑚)2 exp(i2𝑘𝑘0𝑑𝑑)
[1 − 𝜌𝜌𝑚𝑚2 exp(i2𝑘𝑘0𝑑𝑑)]2  

 = [1 + 𝑒𝑒i4𝜑𝜑𝑚𝑚 exp(i4𝑘𝑘0𝑑𝑑)]𝜌𝜌𝑚𝑚2  − (𝜌𝜌𝑚𝑚4  + 𝑒𝑒i4𝜑𝜑𝑚𝑚)exp(i2𝑘𝑘0𝑑𝑑)
[1 − 𝜌𝜌𝑚𝑚2 exp(i2𝑘𝑘0𝑑𝑑)]2 = [1−𝜌𝜌𝑚𝑚2 exp(i2𝑘𝑘0𝑑𝑑)][𝜌𝜌𝑚𝑚2  − 𝑒𝑒i4𝜑𝜑𝑚𝑚 exp(i2𝑘𝑘0𝑑𝑑)]

[1 − 𝜌𝜌𝑚𝑚2 exp(i2𝑘𝑘0𝑑𝑑)]2  

 = −exp[i(2𝑘𝑘0𝑑𝑑+4𝜑𝜑𝑚𝑚)]�1 − |𝜌𝜌𝑚𝑚|2 exp[−i(2𝑘𝑘0𝑑𝑑+2𝜑𝜑𝑚𝑚)]�
1 − |𝜌𝜌𝑚𝑚|2 exp[i(2𝑘𝑘0𝑑𝑑+2𝜑𝜑𝑚𝑚)] = exp(i𝜓𝜓). bracketed term in the numerator 

is conjugate of the denominator 


