Opti 501 Final Exam Solutions 12/11/2018

Problem 1) a) From Maxwell’s first equation we have k- E, = k,E,, = 0. Since k, # 0, we
must have E,, = E,, + iE,, = 0, which indicates that both E}, and E, are equal to zero.
b) E; +1Eq = (ExoX + Ej,0Y) +1(ExoX + EjoY) = (Exo +1Ex)X + (Eyo +1Ey0)Y
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= (Bl + ELy) explitan™ (ELo/EL)I %+ (Ejo + Eyy) explitan™(Ejo/E},)] 9. (1)
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tan(@xo) — tan(@yoe)
1 + tan(@xo) tan(@y,)

¢)  Pxo— ®yo =0 or £180° - tan(@y, — (pyo) =0

- tan(@x,) = tan(ey,) - Eyo/Exo = Ejo/Eyo = @. <| a s some real constant | (2)

~

We thus have E, = E; X + E,y and Eg = E;.X + E},,y = a(E;,X + E},,J). This shows
that E;, and Ej are parallel to each other when a > 0, and are anti-parallel when a < 0.

tan(@xo) — tan(‘l’yo) _
1 + tan(@xo) tan((Pyo)

> tan(peo) tan(pye) = ~1 = Ely/Ely = — Ejy/Efy = B. <{[is some real consant] (3)

d)  Pxo— Pyo = +90° - tan(@y — (pyo) = oo

Since the magnitudes of E,, and E,,, are also equal to each other, we have
|Evol = |Eyol = Elo + Ely = Eyo + Ejg = El[1+ (Elo/EL)] = By, [(Eyo/Eyo)* + 1]
- EL(+p)=E (B2 +1) - El,=tE, “)
From Eqs.(3) and (4), we now find that E;, = +E},. Consequently,
|Eq|* = Exo + By, = Exy + Eyy = |Ey1%; )
E,-E; =E,E; +E,E,=0. (6)

The above equations confirm that the real-valued vectors E;, and E; have equal magnitudes
and are orthogonal to each other.

Problem 2) a) From Maxwell’s 2nd equation with J.. = 0 we have V x H = dD/dt, which yields
[opu(@)]™1 V X B = g,e(w) OE/ 0t
- VX (VXA =pepu(w)e(w)d(—Vyp —0oA/dt)/ot
- V(V-A) —V?A =—[n*(w)/c?][V(dy/0dt) + 02A/0t?]
- V2A — [n(w)/c]? 324/3t*> = V{V - A + [n(w)/c]? oy /dt}. (D

In the Lorenz gauge, we set V- A + [n(w)/c]? 91/t = 0 to arrive at the following wave
equation for the vector potential:

724 — [n(w)/c]? 924/3t* = 0. )



From Maxwell’s first equation (with pg... = 0), working again in the Lorenz gauge, we find
V-D=0 - ge@V-E=0 - V- (-Vy—-0A/0t)=0
- V-(WY)+aWV-4)/ot=0 - V*)—[n(w)/c]?*d*yp/ot?* =0. 3)

b) The assumption of monochromaticity implies that the fields have a time-dependence factor
exp(—iwt). Consequently d24(r,t)/0t? = (—iw)?A(r) = —w?A(r); similarly, 0%y (r,t)/0t* =
—w?P(r). For plane-wave solutions of Maxwell’s equations, we now write A(r) = A, exp(ik - 1)
and Y(r) = Y, exp(ik - r). We will then have

V2A(r) = —(k - k)A, exp(ik - 1), 4)

V2Y(r) = —(k - k)Y, exp(ik - 7). )

The wave equations for A(r, t) and (r, t) in Egs.(2) and (3) now yield k - k = [n(w)/c]?*w?,
which is the same dispersion relation k? = [wn(w)/c]? as obtained previously from Maxwell’s
equations without resort to the potentials.

c¢) The field amplitudes for E(r,t) = E, expli(k - r — wt)] and B(r,t) = B, expli(k - r — wt)] may
now be derived from E = —Vy — dA/ot as E, = —iky, + iwA,, and from B =V X A as
B, =ik X A,.

Problem 3) Considering that Ez = p,,E4 exp(ik,d), we will have

. . mE
En = TmEo + pmEp exp(ikod) = TmBy + prEs exp(i2kod) — Ep = tio—s (1)

The overall transmission coefficient T of the Fabry-Perot cavity may now be determined
straightforwardly, as follows:

. 72, exp(ikod)
tE, = 1., E, exp(ik,d - T=—2m=" .
0 mE4 exp(ik,d) 1 - p2, exp(i2kod)
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As for the overall reflection coefficient p, we note that the reflected E-field is the super-
position of a direct reflection p,,E, from the first mirror, and the transmitted fraction of Ep
through the first mirror, albeit after Ez has been phase-shifted by k,d. We thus write

PmTin exp(i2kod)
1 - pZ, exp(izkod)] ~°

PE, = pEy + TiEp exp(ik,d) = pmE, + TmpmEa exp(i2k,d) = [pm +

[1 B (przn B Trzn) eXp(iZkOd)]pm (3)

> p=
p 1 - p2, exp(i2kyd)

Digression: For non-absorptive mirrors, it is known that p,, = |p,,|e!?m and t,, = |t,,|e!(®m*90) o that
pZz — 12 = (|pm|? + |1,,]?)e2¢m = ei2¢m_ where ¢,, is a phase angle that depends on the specific
structure of the mirror. A similar relation must, therefore, hold for the Fabry-Perot resonator if the mirrors
happen to be non-absorptive. To confirm this relation, we write

p2 2= [1+ el*®m exp(id4kod) — 2e129m exp(i2kod)]pZ, — (p2, — e129M)2 exp(i2kyd)
[1 - p% exp(i2kod)]?
_ [1+e1*9m exp(i4kod)1ph — (ph + e1*Pm) exp(izkod) _ [1-ph exp(izkod)][pF — e*Pm exp(izkod)]
[1 - pf exp(i2kod)]? [1 - pf exp(i2kod)]?

— _ expli(2kod+49) {1 — |pm|? exp[—i(2kod+2¢m)]} — ex (nlj) | bracketed term in the numerator
1—|pml?expli(Rkod+2¢m)] p ’ is conjugate of the denominator




